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In this numerical study, we investigate natural convection in a two-dimensional
square-section enclosure vibrating sinusoidally parallel to the applied temperature
gradient in a zero-gravity field. The full Navier–Stokes equations are simplified with
the Boussinesq approximation and solved by a finite difference method. Whereas
the Prandtl number Pr is fixed to 7.1 (except for some test cases with Pr = 7.0,
6.8), the vibrational Rayleigh number Ra based on acceleration amplitude is varied
from 1.0 × 104 to 1.0 × 105, and dimensionless angular frequency ω is varied from
1.0× 100 to 1.0× 103. In the tested range, time evolutions exhibit synchronous, 1/2-
subharmonic and non-periodic responses, and flow patterns are characterized mainly
by one- or two-cell structures. Flow-regime diagrams show considerable differences
from results in a non-zero-mean-gravity field even at large acceleration amplitudes,
and suggest that some parts of non-periodic-response regimes may be related to
transitions between flow patterns. The amplitude of fluctuations in spatially averaged
kinetic energy density K (equal to the difference between maximum and minimum
kinetic energies over a cycle) tends to be large when fluid is stationary everywhere over
some interval of time during each period, and has a peak when fluid begins to move
continuously throughout one period. Such peaks are caused by impulsively started
convection, and are not connected to resonant oscillations in a constant-gravity field.

1. Introduction
This study concerns the system response of buoyantly driven fluid in an enclosure,

or a cavity, to oscillatory acceleration at zero-mean gravity, in order to give a better
physical insight into natural convection with perturbed acceleration in space. In low-
gravity or microgravity environments, we can expect that reduction or elimination of
natural convection may enhance the properties and performance of materials such as
crystals. However, aboard orbiting spacecrafts all objects experience low-amplitude
broad-band perturbed accelerations, or g-jitter, caused by crew activities, orbiter
manoeuvres, equipment vibrations, solar drag and other sources. Therefore, there is
growing interest in understanding the effects of these perturbations on the system
behaviour.

In contrast to many studies concerning g-jitter effects on the system at terrestrial
gravity, or on ‘Rayleigh–Bénard’ convection, there are only a few concerning g-jitter
effects at zero-mean gravity. The existence of base, or non-zero-mean, gravity may
be unimportant if g-jitter amplitude is much larger than base gravity. However, for
smaller amplitudes of g-jitter relative to base gravity, and especially for the onset of
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convection, we cannot ignore the existence of base gravity. In fact, the present study
will suggest that it remains significant even for rather large amplitudes of g-jitter.
Kamotani, Prasad & Ostrach (1981) have analysed two-dimensional square-cavity
convection, with zero-mean acceleration, using small-amplitude linearized equations
for the fluctuating field and the steady-state equations for the mean field. Their
mathematical model is considered to give a good prediction of the system behaviour
at low values of the vibrational Rayleigh number Ra. Earlier, Gresho & Sani (1970)
conducted a linear stability analysis on a system with non-zero-mean gravity, and
showed an analogy to a simple pendulum governed by the Mathieu equation. Their
results are not directly applicable to the present study because they relate to small
g-jitter relative to base gravity; but it is interesting that g-jitter can destabilize stably
stratified fluid and stabilize unstably stratified fluid.

Gershuni & Zhukhovitskiy (1986) summarize several Russian studies, including
analytical and fully nonlinear numerical works. These analytical works were based on
the method of averaging under the assumption of high-frequency g-jitter. Wadih &
Roux (1988) considered a cylindrical container of infinite length in which the applied
temperature gradient and direction of g-jitter are parallel to its axis. They proposed
some methods to analyse the effect of small-amplitude g-jitter on the stability limits
for the onset of convection, by using Floquet theory.

Biringen & Danabasoglu (1990) have solved the fully nonlinear time-dependent
Boussinesq equations for g-jitter in a two-dimensional rectangular cavity with an
aspect ratio of 2 at Ra = 1.771×105 and at a Prandtl number Pr = 0.007 (germanium).
They specified the critical values of ω above which the system experiences transition
from convective temperature fields to a conductive one; more specifically, a critical
value of about 45 for g-jitter parallel to the applied temperature gradient and about
200–250 when perpendicular to that, where ω is the dimensionless angular frequency
of g-jitter (for definition, see the next section). From further calculations for Pr = 0.71
(air), they found a Prandtl-number effect inconsistent with Kamotani et al’s owing to
the omitted nonlinear terms.

Biringen & Peltier (1990) have considered the effects of three-dimensionality as well
as full nonlinearity, and computed fluid motion between parallel walls with different
constant temperatures and with g-jitter parallel to the applied temperature gradient
for (Ra, P r, ω) = (5.7×104, 7, 800), (2.28×105, 7, 800), (8.82×104, 7, 1400). Thevenard
& Hadid (1991), assuming low Grashof numbers and low Prandtl numbers, have
compared a linearized analysis with fully nonlinear simulations for two-dimensional
convection between adiabatic walls with g-jitter perpendicular both to the walls and
to the imposed temperature gradient.

Kondos & Subramanian (1996) have investigated the effect of frequency by solving
the fully nonlinear equations in a two-dimensional square cavity at several values
of Ra and Pr. They showed that there is a qualitative difference between low and
high frequencies. However, they dealt only with g-jitter perpendicular to the applied
temperature gradient, as also did Thevenard & Hadid and the numerical works in
Gershuni & Zhukhovitskiy: this problem is simpler than that with g-jitter parallel
to the temperature gradient, as will be mentioned later. Grassia & Homsy (1998a, b)
have treated combined thermocapillary- and buoyancy-driven convection in a fluid
layer of finite depth but of infinite extent, along which a uniform temperature gradient
is imposed. They employed a quasi-steady approach, in the limit of very low forcing
frequency. Recently, Suresh, Christov & Homsy (1999) have investigated the same
problem, considering small but finite frequency of g-jitter in order to moderate
singularities in the quasi-steady model.
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Figure 1. Two-dimensional enclosure and coordinate system.

Until now, there have been no experiments or fully nonlinear simulations which sys-
tematically elucidate the effects of g-jitter on buoyantly driven flows in a microgravity
environment over wide ranges of the governing parameters. And many analytical
studies are restricted by the assumption of linearity, quasi-steadiness or very high/low
frequency. Therefore, in the present work, we study stability over wide ranges of Ra
and ω, solving numerically the fully nonlinear time-dependent Boussinesq equations
in a two-dimensional square-section cavity in a zero-gravity field. More specifically,
the cavity has perfectly thermal-conducting sidewalls and constant-temperature dif-
ferentially heated walls at ‘top’ and ‘bottom’. Whereas the Prandtl number is fixed
as Pr = 7.1 (water) throughout this study except for some test cases (Pr = 7.0, 6.8),
Ra and ω are varied from 1.0 × 104 to 1.0 × 105 and from 1.0 × 100 to 1.0 × 103,
respectively.

For the g-jitter, we assume a sinusoidal acceleration parallel to the direction
of the applied temperature gradient. According to Kamotani et al. (1981), the
g-jitter component perpendicular to the direction of the temperature gradient is
the most critical, and the parallel component does not cause appreciable changes
in the oscillatory flow field. Their results correspond with the facts that there is no
threshold for the onset of the ‘Rayleigh–Bénard’ convection with horizontally applied
temperature gradient and that there is a threshold for fields with vertically applied
temperature gradient. But the limited validity of the linear approximation suggests
that one must take nonlinearity into account. Accordingly, we may expect that our
present system will reveal richer dynamics even at relatively low Ra and ω.

2. Equations and numerical methods
Figure 1 shows the domain to be analysed and the adopted coordinate system

(x∗, z∗). All asterisked quantities in this paper are in dimensional form. Fluid in a
two-dimensional cavity with a square cross-section is subject to sinusoidal acceleration
parallel to the vertical axis in a zero-gravity field. Upper and lower walls, parallel
to the horizontal axis, are maintained at constant temperatures θ∗c (cold) and θ∗h
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(hot), respectively. Sidewalls, perpendicular to the horizontal axis, are assumed to
be perfectly thermally conducting. Uneven density of fluid originating from the
temperature difference of the walls produces buoyancy and drives convection due to
fluctuating acceleration.

The full Navier–Stokes equations in two-dimensional Cartesian coordinates are
simplified with the Boussinesq approximation, which leads to the two-dimensional,
unsteady equations for continuity, momentum transport and energy transport. In
dimensionless form, these can be written as

∇ · v = 0, (2.1)

Dv

Dt
= −∇p+ Pr ∇2v + Ra Pr sin (ωt)θ ez (2.2)

and
Dθ

Dt
= ∇2θ, (2.3)

with D/Dt = ∂/∂t + v · ∇, ez = (0, 1), ∇ = (∂/∂x, ∂/∂z) and ∇2 = ∂2/∂x2 + ∂2/∂z2,
where v = (vx, vz) is velocity, t is time, p is pressure and θ is temperature. These
are non-dimensionalized using the cavity height H∗ as the length scale, ρ∗(κ∗)2/(H∗)2

as the pressure scale, the thermal diffusion time (H∗)2/κ∗ as the time scale and the
thermal diffusion velocity κ∗/H∗ as the velocity scale. Here, ρ∗ and κ∗ are density
and thermal diffusivity in dimensional form, respectively. Also we non-dimensionalize
temperature as θ = (θ∗ − θ∗c )/(θ∗h − θ∗c ).

If we introduce the vorticity ζ and streamfunction ψ defined respectively as

ζ =
∂vz

∂x
− ∂vx

∂z
(2.4)

and as

vx =
∂ψ

∂z
, vz = −∂ψ

∂x
, (2.5)

the continuity equation (2.1) is identically satisfied and need not be dealt with
explicitly. Then we can rewrite equations (2.4) and (2.5) as a Poisson equation

ζ = −∇2ψ (2.6)

and equations (2.2) and (2.4) as a vorticity-transport equation

Dζ

Dt
= Pr ∇2ζ + Ra Pr sin (ωt)

∂θ

∂x
. (2.7)

The set of governing equations (2.3), (2.6) and (2.7) contains three parameters,
namely, the vibrational Rayleigh number Ra based on the acceleration amplitude
η∗ of the g-jitter, the Prandtl number Pr of fluid, and the dimensionless angular
frequency ω, which are given as follows:

Ra =
η∗α∗(θ∗h − θ∗c )(H∗)3

ν∗κ∗
, (2.8)

Pr =
ν∗

κ∗
(2.9)

and

ω =
ω∗(H∗)2

κ∗
. (2.10)
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Here, α∗ is the coefficient of thermal expansion, ν∗ is kinematic viscosity and ω∗ is
the angular frequency of the forced acceleration. Pr is fixed to 7.1 throughout this
paper, except for some test cases. Further, the dimensionless period τ is defined by

τ =
2π

ω
. (2.11)

The governing equations are solved subject to the following boundary conditions:

ψ = 0,
∂ψ

∂x
= 0 and

∂θ

∂z
= −1 on x = 0, 1 (0 6 z 6 1),

ψ = 0,
∂ψ

∂z
= 0 and θ = 1 on z = 0 (0 6 x 6 1)

ψ = 0,
∂ψ

∂z
= 0 and θ = 0 on z = 1 (0 6 x 6 1).


(2.12)

The first condition expresses the perfect conductivity of the sidewalls.
The solution procedure of the governing equations is based on the time marching

method. All computations were carried out on desktop PCs. The whole compu-
tational domain is discretized by an equally spaced regular mesh with a size of
41 × 41, as well as 21 × 21 and 81 × 81 for supplementary confirmation. The time
increment was π × 10−6 in most cases; but sometimes, especially at high Ra and
ω, smaller values were chosen in order to confirm the accuracy of our results. The
energy-transport equation (2.3) and the vorticity-transport equation (2.7) are ap-
proximated by a semi-implicit approach, that is, the Crank–Nicholson method with
second-order accuracy in time. All space derivatives except the convection terms are
approximated with central finite differences with second-order accuracy. The convec-
tion terms are approximated with a third-order upwind scheme. We solved the finite
difference equations by the successive over-relaxation (SOR) iterative method. The
convergence of the SOR method is determined when the maximum relative errors
reach 10−5 for equation (2.3) and 10−3 for equation (2.7). At each time step, the Pois-
son equation (2.6) is approximated by the central finite difference with second-order
accuracy, and solved by the SOR method. The convergence of the SOR method
is determined when the maximum relative error reaches 10−10. The calculations re-
ported are started with zero-velocity and zero-temperature initial fields, and proceed
long enough that these fields become well developed. For sufficient time, we actu-
ally needed several τ (here τ ≡ 2π/ω) for ω = 100–101, several decades of τ for
ω = 2 × 101–102, and several hundreds of τ for ω = 2 × 102–103. This means that
the computation time is dominated by thermal diffusion, rather than the imposed
period τ.

Upwind discretization of the convection terms introduces a diffusive error, or
artificial diffusion, as its leading truncation error term is diffusive. In the present
situation, the buoyant force acting on the fluid changes its sign twice during one
period due to reversing the forced acceleration; and we find that, in some cases,
a virtually zero flow field appears for some finite interval of time during each
period. We confirmed that central difference schemes are not free from numerical
oscillations at most Ra and ω, even when the mesh is very fine. Of course, the time
increments are much smaller than those required for convective and diffusive stability
of explicit schemes. The accuracy of simulated results will be discussed in the next
section.
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Mesh size Ra = 2.5× 104 Ra = 4.0× 104

21× 21 −4.95 −6.59

41× 41 −4.98 −6.45

81× 81 −4.99 −6.44

Table 1. Streamfunction ψ at (x, z) = (0.25, 0.5) in the terrestrial environment
(with sin (ωt) replaced by 1) for Pr = 7.0.

Mesh size Numean Nuamp

21× 21 2.34 0.45

41× 41 2.17 0.40

81× 81 2.10 0.41

Table 2. Time-mean Nusselt number Numean and amplitude of Nusselt number Nuamp (difference
between maximum and minimum Nu) over the heating parts of walls, in the terrestrial environment
(with sin (ωt) replaced by 1) for Ra = 1.0× 105 and Pr = 6.8.

(a) (b)

Figure 2. Steady convection in the terrestrial environment (with sin (ωt) replaced by 1) for
Pr = 7.0. Streamlines for (a) Ra = 2.5× 104, (b) 4.0× 104.

3. Results and discussion
3.1. Convection in the terrestrial environment

In order to confirm the accuracy of the numerical method, we conducted a simulation
in the terrestrial environment without gravity modulation, namely, using equation
(2.7) with sin (ωt) replaced by 1. Results for steady motion are shown in figure 2;
more specifically, figure 2(a) for Ra = 2.5 × 104 and Pr = 7.0, and figure 2(b) for
Ra = 4.0 × 104 and Pr = 7.0. These results coincide with those by Mizushima &
Adachi (1997). Table 1 shows the effect of mesh size on numerical accuracy. The flow
patterns showed no visible mesh-size effect.

A result for unsteady motion is shown in figure 3; more specifically, for Ra =
1.0 × 105 and Pr = 6.8. This result is very similar to that of Goldhirsch, Pelz &
Orszag (1989), although the Nusselt numbers do not agree exactly. Table 2 shows
the effect of mesh size on numerical accuracy. Although we again cannot see any
mesh-size effect on the flow patterns, the error is larger than in table 1.

In the present paper, our main concern is the zero-mean-gravity environment with
modulation. In order to ensure the robustness of our results, we compared all results
(41 × 41 mesh) with 21 × 21 mesh results for all data, and confirmed that there is



Zero-gravity convection 333

Mesh size Ra = 7.0× 104 Ra = 8.5× 104

21× 21 16.7 19.6
41× 41 17.0 19.3

Table 3. Amplitude of streamfunction ψamp (difference between maximum and minimum ψ) at
(x, z) = (0.25, 0.25) for ω = 1.0× 102.

(a)

(b) (c) (d )

0.1 0.2 0.3 0.4 0.5 0.6
1.5

2.0

2.5

3.0

t

Nu

Figure 3. Unsteady convection in the terrestrial environment (with sin (ωt) replaced by 1) for
Ra = 1.0 × 105 and Pr = 6.8. (a) Time evolution of Nusselt number Nu over the heating parts of
walls, (b) streamlines at t = 0.5520, (c) at t = 0.5620, (d) at t = 0.5700.

no visible difference between them except for one case. For this one exception, we
confirmed that there is no qualitative difference between 41 × 41 mesh and 81 × 81
mesh results. Quantitatively, the present problem needs a less fine mesh size than
constant-gravity problems. In fact, table 3, which corresponds to the present problem,
shows much less error than table 2. This is expected, if we remember that unsteadily
forced flow is likely to have much less well-developed boundary layers than steady
flow. Even so, at rather high frequency of forcing, computation may yield large error
because the changes in the vorticity field are confined to thin regions near walls
(Kondos & Subramanian 1996). In the present problem, it will be seen that the flow
becomes completely stationary at sufficiently high frequencies, and so we fortunately
can avoid this difficulty.



334 K. Hirata, T. Sasaki and H. Tanigawa

(a)

t /ô

–15

–10

–5

0

5

10

15

ã

(b)

(c) (d )

(e )

t /ô

t /ô

t /ô

ã

–8

–6

–4

–2

0

2

–6

–4

–2

0

2

4

6

0 0.5 1.0 1.5 2.0 0 0.5 1.0 1.5 2.0
t /ô

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 60 62 64 66 68 70

ã

76 77 78 79 80 81
–16

–12

–8

–4

0

4

ã

–15

–10

–5

0
5

10

15

–20

Figure 4. Time evolution of streamfunction ψ at (x, z) = (0.25, 0.25). (a) ω = 1, Ra = 3.5 × 104

(case SY); (b) 200, 7.0 × 104 (case SY); (c) 500, 1.0 × 105 (case SU); (d) 200, 1.0 × 105 (case NP);
(e) 1, 1.0× 105 (case NP).

3.2. Periodicity

Figure 4 shows time evolutions of streamfunction ψ at (x, z) = (0.25, 0.25) for various
values of ω and Ra. Each result is obtained at a time-interval long enough for the
system to settle down after the start-up of calculation. Figures 4(a) and 4(b) are typical
examples of a response synchronous with the forced acceleration (hereafter, referred to
as case SY), namely, having the same period as the forced acceleration. In figure 4(a),
during one period, fluid appears to be completely stationary over some interval of
time, when the buoyant force is stabilized by the reversed direction of the acceleration.
But in figure 4(b) flow is maintained at all time, involving higher harmonic waves to
some extent. To be exact, while in figure 4(b) the flow is synchronous and periodic,
that in figure 4(a) is synchronous but not exactly periodic, having the alternative
of positive or negative amplitudes of ψ each period chosen in a random manner,
for the reason mentioned in the next subsection. Figure 4(c) is a 1/2-subharmonic
case (case SU), namely, one with twice the forced-acceleration period. Figure 4(d) is
a case without periodicity (case NP). Figures 5 and 6 show corresponding Poincaré
sections at a phase angle of π/2 relative to the forced acceleration. More specifically,
the abscissa denotes the value of ψ at (x, z) = (0.25, 0.25), and the ordinate denotes
the value at (x, z) = (0.5, 0.5) at the same moment (figure 5) and the value after one
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Figure 5. Poincaré map for t = (n + π/2)τ, with n = 20, 21, 22, . . . , 100. Parameters are as in
figure 4(d). The abscissa denotes streamfunction ψ at (x, z) = (0.25, 0.25), and the ordinate at
(x, z) = (0.5, 0.5).

period at the same place (figure 6). The linearity shown in figure 5 is identical to
the flow pattern in space (see also figure 14), while figure 6 highlights its temporally
chaotic aspect. Figure 4(e) is another example of case NP. This resembles figure 4(a),
except for fluctuations with higher frequencies. These dominant higher frequencies are
close to that for constant-gravity convection with the same Rayleigh number (such
as shown in figure 3a), and in § 3.3 we will confirm the relation with constant-gravity
convection by flow-pattern observation.

The periodicity is broadly summarized in figure 7 as a function of both ω and
Ra, with so-called regime IV (in Lizée & Alexander 1997) also shown, which will
be discussed in § 3.5. We can see that convective motion becomes more stable as ω
increases or as Ra decreases (regime ST), and that the motion is almost synchronous
with the forced acceleration (regime SY) except for three regimes, that is, a 1/2-
subharmonic regime around ω = 500 and Ra > 6.0 × 104 (regime SU) and two
non-periodic regimes around ω = 200 and Ra > 8.0 × 104 (regime NP(I)), and for
ω < 10 over a wide range of Ra (regime NP(II)). Additionally, the shaded area shows
where fluid is stationary everywhere over some interval of time during each period τ.
In regime SY in this area, we often find random alternation between the solutions
with different symmetries, as mentioned above regarding figure 4(a).

Mizushima & Adachi (1997) have shown that ‘Rayleigh–Bénard’ convection be-
comes unsteady for Ra greater than about 5 × 104, and Goldhirsch et al. (1989)
have found unsteady complex flow fields at Ra = 1.0 × 105. Therefore, at Ra larger
than 5 × 104, we might expect to observe more complicated phenomena. In fact,
at Ra > 5 × 104, regime NP(II) appears over a wider range of ω. But, even at
Ra > 5 × 104, the flow is still rather simple, being almost synchronous, at ω larger
than 10–20, because the sign of the forced acceleration changes faster than any devel-
oping flow field which will might have led to turbulence. In contrast, at Ra < 5× 104,
regime NP(II) looks strange, because it seems to be isolated among regimes SY. As
will be mentioned later, flow-pattern observation resolves this apparent strangeness.

3.3. Flow pattern

Figures 8–13 show sequences of streamlines for various ω and Ra; where plots in
the sequence are omitted it is because the fluid is stationary at that time. Figure 8
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Figure 6. Poincaré map for (x, z) = (0.5, 0.5). Parameters are as in figure 4(d). The abscissa denotes
streamfunction ψ at t = (n + π/2)τ, and the ordinate at t = (n + 1 + π/2)τ, with n = 20, 21,
22, . . . , 100.
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Figure 7. Periodicity. •, synchronous (case SY); ◦, 1/2-subharmonic (case SU); �, non-periodic
(case NP); ×, stable (case ST). Shaded area shows where fluid is stationary everywhere over some
interval of time during each period τ.

shows streamlines for ω = 1 and Ra = 3.5 × 104 during one period, figure 9 for
ω = 10 and Ra = 5.0× 104 and figure 10 for ω = 20 and Ra = 7.0× 104. Although
these figures are all in regime SY (see figure 7), the flow patterns are not similar
to one another: in figure 8, the main structure has one cell; in figure 9, it has
two cells; and in figure 10(a–c), it changes from two to four cells, then breaks
symmetry to form one main diagonal cell. Note that the symmetry/antisymmetry of
the governing equations and the boundary conditions can lead to other solutions
which are obtained by reflecting about the vertical cavity centreline (parallel to the
applied temperature gradient), about the horizontal cavity centreline (perpendicular to
the gradient), and about both of them. The existence of these reflection solutions (or
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–9

Figure 8. A streamline pattern at time τ/4 for ω = 1 and Ra = 3.5× 104.
Fluid is stationary at times 0, 2τ/4 and 3τ/4.

–8
8

Figure 9. A streamline pattern at time τ/4 for ω = 10 and Ra = 5.0× 104.
Fluid is stationary at times 0, 2τ/4 and 3τ/4.

–1818
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4 –4
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–12

2

Figure 10. A sequence of streamlines for ω = 20 and Ra = 7.0× 104. (a) t = 0.2000τ, (b) τ/4,
(c) 0.3750τ. Fluid is stationary everywhere at t = 0 and 3τ/4.

mirror-image solutions) is a remarkable difference from horizontal-jitter problems.
Any one of these four reflection solutions can be simulated, depending on initial
conditions. In the case of one-cell or two-cell flow, because two of the four solutions
are the same as the other two, we observe only two solutions which are reflections
of one another, namely, clockwise/counterclockwise solutions (for one-cell flow) or
downward/upward solutions at the cavity centre (for two-cell flow). When fluid is
stationary with a conductive temperature field over some interval of time during each
period, one or other of the reflection solutions next appears in a random manner.
Addition of a tiny asymmetry may result in the appearance of only one member of the
reflection solutions, and this is a convenient device for imposition of periodicity. In the
present study, however, we did not employ a tiny asymmetry. This random appearance
of the reflection solutions is likely to arise in the shaded area in figure 7, which is,
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(a)

–6

(b) (c)

(d ) (e) ( f )
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–6 –8
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8 –9

Figure 11. A sequence of streamlines for ω = 500 and Ra = 7.0× 104. (a) t = 0, (b) τ/4, (c) 2τ/4,
(d) 3τ/4, (e) 4τ/4, (f) 5τ/4, (g) 6τ/4, (h) 7τ/4.

of course, classified as case SY. In fact, we sometimes observed one of the reflection
solutions more frequently than the others, because of the passive introduction of a
tiny asymmetry by the SOR method.

Other typical samples of observed flow patterns are shown in figures 11, 12 and
13. Figure 11 is for ω = 500 and Ra = 7.0 × 104, which is assigned to regime SU
in figure 7, and found to be characterized by only one main cellular structure at
any time but with rapid sign changes between (c) and (d) and between (g) and (h)
(see figure 4c for reference). Figure 12 is for ω = 1 and Ra = 1.0 × 105, which is
assigned to regime NP(II) in figure 7. Time t in the figure corresponds to that in
figure 4(e). As can be seen, one-cell and four-cell flows appear cyclically, which is
very similar to convection in a constant-gravity environment (see figure 3). Figure 13
is for ω = 5 and Ra = 3.5× 105, which is also assigned to regime NP(II) in figure 7
but at Ra < 5× 105. This flow pattern seems to fluctuate randomly between one-cell
and two-cell flows.

In conclusion, flow patterns observed in the tested range are summarized in figure 14
as a function of both ω and Ra. Here, 1 denotes one-cell flow (see figures 8 and 11);
2 two-cell flow (see figure 9); M starting with two-cell flow and followed by distorted
one- and/or four-cell flow (see figure 10); A recurrent appearance of one- and four-
cell flows (see figure 12); and F random fluctuation between one- and two-cell flows
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Figure 12. A sequence of streamlines for ω = 1 and Ra = 1.0 × 105. (a) t = (80 + 0.2000)τ,
(b) (80 + 0.2125)τ, (c) (80 + 0.2375)τ, (d) (80 + 1/4)τ, (e) (80 + 0.2625)τ, (f) (80 + 3/4)τ. Values of
t correspond to those in figure 4(e). The first and last in the sequence, at t = 80τ and (80 + 3/4)τ,
are omitted because fluid is stationary everywhere.
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Figure 13. A sequence of streamlines for ω = 5 and Ra = 3.5 × 104. (a) t = (161 + 0.2250)τ,
(b) (161 + 1/4)τ, (c) (161 + 0.2750)τ. The first and last in the sequence, at t = 161τ and (161 + 3/4)τ,
are omitted because fluid is stationary everywhere.

(see figure 13). Most of boundaries in this figure are consistent with boundaries in
figure 7, as one might expect. It can be seen that the flow pattern is characterized
mainly by one or two cellular structures over the range tested, and that the flow
pattern becomes more complicated at Ra larger than about 5 × 105. In regime SU
in figure 7, only one-cell flow can be observed. Regime NP(I) and a part of regime
NP(II) around Ra = 2–5× 104 nearly coincide with boundaries between one-cell and
two-cell flows.

3.4. Amplitude response

As a global indicator of responses, we adopt the spatially averaged kinetic energy
density K which is defined by

K =
1

2A

∫∫
(v2
x + v2

z ) dx dz, (3.1)

where A is the cross-section area of the cavity. Figure 15 shows contours of the
amplitude Kamp of K , which is the difference between maximum and minimum values
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Figure 14. Flow pattern. 1, one cell; 2, two cells; M, starting with two cells and followed by one
and/or four cells; A, alternation of one and four cells; F, random fluctuation between one and two
cells; ×, stable.
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Figure 15. Contours of the amplitude Kamp of fluctuations in spatially averaged
kinetic energy density.

of K during a long period of time. In regime SY of figure 7, when fluid is stationary
everywhere over some interval of time during each period, Kamp is seen from figure 15
to have larger values, and there is a ridge line (denoted by the broken line in figure 15)
close to the boundary of the shaded area in figure 7.

To investigate this ridge line, at Ra = 5.0 × 104, phase diagrams are plotted in
figure 16 for several values of ω, where the ordinate is the streamfunction ψ at
(x, z) = (0.25, 0.25). Flow patterns were always confirmed to be characterized by a
two-cell structure whenever ω lies in the range 10–100. Thus, we consider here the
results concerning only one member of the two-cell symmetric pair, namely, two-cell
flow with the same direction as the applied-temperature-gradient direction at the
cavity centre (as shown in figure 9).
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Figure 16. Phase diagram at (x, z) = (0.25, 0.25) for Ra = 5.0× 104.
(a) ω = 10, (b) 20, (c) 50, (d) 100.
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Figure 17. Time evolution of buoyancy moment M for ω = 10 and Ra = 5.0× 104.
Broken line is for conductive temperature field.

At ω = 10 (see figure 16a), fluid is stationary when sin (ωt) is negative because
of the stabilizing effect of buoyancy. When sin (ωt) changes sign, buoyancy becomes
destabilizing, but it is some time before the occurrence of convection, which seems
to start suddenly. The (near-) impulsive start of flow yields a minimum of ψ at
sin (ωt) = 0.95. With further increase of t, convection becomes weaker as buoyancy
becomes weaker, and finally fluid motion ceases at about sin (ωt) = 0.

As mentioned earlier, flow patterns are always characterized by two cells, if flow
occurs. Here, we introduce the buoyancy moment M defined as

M =
Ra Pr sin (ωt)

A

∫∫
θ( 1

2
− z) dx dz. (3.2)
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Figure 17 shows the time evolution of M corresponding to figure 16(a). The broken
line denotes the result for a conductive temperature field with fluid at rest. For t from
zero to 0.15, the solid line representing M coincides with the broken line. At t = 0.2,
an undershoot can be observed, which corresponds to the undershoot in figure 16(a),
with a correspondingly increased kinetic energy. After this undershoot and following
weak damping, M tends asymptotically to the broken line, when convection has
ceased.

On increasing ω, the undershoot in figure 16 becomes deeper and the value of
sin (ωt) becomes larger at the minimum of ψ. At ω = 20 the undershoot becomes
greatest at sin (ωt) = 1 (see figure 16b). Further increase of ω cannot produce stronger
convection than that at ω = 20 because fluid cannot follow a faster acceleration
change, which can be seen clearly in figures 16(c) and 16(d). In this way, the ridge line
(in figure 15) appears. Further, at ω = 100 (see figure 16d), we can see a remarkable
hysteresis effect in which reversed flow persists after sin (ωt) becomes negative.

3.5. Other effects

Lizée & Alexander (1997) have studied the same problem as here, but with non-zero-
mean gravity in the horizontal direction (perpendicular to the applied temperature
gradient and to g-jitter). On comparing our results with theirs, it becomes obvious
that base gravity (when present) may remain significant even for amplitudes of
modulation as large as ten times the base gravity, especially in the case that the base-
gravity direction is perpendicular to g-jitter. Their unstable regime IV (see figure 7), in
which they observed a Feigenbaum-type route to chaos, roughly seems to agree with
our regimes NP(I) and SU. Moreover, flow patterns reported by Lizée & Alexander
are all characterized by one cell, as are most of the flow patterns in regimes NP(I)
and SU. However, their flow-regime diagram, even at larger Ra or g-jitter larger than
the base gravity, looks simpler than our figures 7 (on periodicity) and 14 (on flow
pattern), although their tested range of ω is narrower than ours and there is a trivial
difference of Pr.

In the asymptotic limit of small ω, the flows at each instant may be compared
with those for constant gravity (shown in § 3.1). Namely, as ω → 0, we can expect to
observe during a cycle only one-cell flow around Ra = 5 × 103 to 2 × 104, and both
one-cell and two-cell flows around Ra = 2 × 104 to 5 × 104. Around Ra = 105, we
can expect to observe more complicated flows, including the recurrent appearance of
one-cell and four-cell flows over some interval of time.

In the present study, we have considered a situation with perfectly conducting side-
walls. However, insulated-sidewall problems are interesting theoretically and prac-
tically: for example, Wadih & Roux (1988) have shown that these two problems
display different effects of g-jitter on the onset of convection. Generally, insulated
sidewalls impose a different type of symmetric constraint than conducting sidewalls;
we expect that two-cell flow will thus appear less frequently than in the present
context. In situations such as the transition process from stationary state to turbu-
lence, one cannot ignore this sidewall effect, except at very high Ra. In particular,
in the zero-mean-gravity problem, if ω is low, flow may become unstable and then
decay at least once a cycle. Moreover, as two-cell flow is frequently observed in the
present parameter range, many test cases are regarded to be just at the beginning
of the transition process. Therefore, we consider that, within the present parameter
range, the sidewall effect on the regime boundaries for two-cell flow may be so large
as to cause qualitative changes. On the other hand, we may expect some features
to be unchanged such as the existence of regime ST at high ω and low Ra, the
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existence of regime A at low ω and around Ra = 105, and the existence of regime NP
around ω = 102. As well as more general thermal-boundary conditions, other factors
not studied here include other cavity aspect ratios, inclination of g-jitter direction,
non-sinusoidal wave form of g-jitter, other Pr values etc.

4. Conclusion
The system response of buoyantly driven fluid in a two-dimensional square cavity

to oscillatory acceleration parallel to the applied temperature gradient in a zero-
gravity field was studied methodically using a fully nonlinear numerical simulation,
at Pr = 7.1 (water), Ra = 1.0× 104 to 1.0× 105 and ω = 1.0× 100 to 1.0× 103.

In the range tested, time evolutions exhibit synchronous, 1/2-subharmonic and
non-periodic responses, and the flow pattern is characterized mainly by a one- or two-
cellular structure. A flow-regime diagram (figure 7) based on periodicity reveals that
convection becomes more stable as ω increases or Ra decreases, and that convection
is almost synchronous with the forced acceleration except for a 1/2-subharmonic-
response regime and two non-periodic-response regimes, some parts of which are
isolated among synchronous regimes. A flow-regime diagram (figure 14) based on
flow pattern reveals that, for Ra larger than about 5 × 104, convection tends to
become more complex: some parts of non-periodic-response regimes appear around
boundaries between one- and two-cell-flow regimes, suggesting transition between
these flows. Moreover, figures 7 and 14 reveal the influence of base gravity even at
relatively large Ra if we compare them with previous results with non-zero-mean
gravity.

The amplitude of fluctuations in spatially averaged kinetic energy K tends to be
large when fluid is stationary everywhere over some interval of time during each
period, and has a peak when fluid begins to move continuously throughout one
period. Such a peak is caused by impulsively started convection, and is not connected
directly to the resonance with the convection in a constant-gravity field. Thus, the
phase shift through such a peak is rather small.

We have shown varied hydrodynamic behaviour in a rather simple system. The
behaviour is sometimes much more complicated than one would have expected on
the basis of a constant-gravity field, or a modulating gravity field with even a small
non-zero-mean component. The present numerical results reveal this complexity even
in the averaged quantities that are often important in practical problems. These results
may also provide a stimulus for future analytical and numerical work.

We are grateful to the referees and to Professor A. D. D. Craik (St Andrews
University) for helpful comments.
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